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Abstract 
The first rule of evaluating fit of SEM models is, no single set of rules and cutoffs 
will be appropriate in all situations, and the most important consideration is the 
substantive interpretation of model results together with guiding theory 
regarding the structure of the model. I will interpret good fit of the model to the 
data when the sample size is at least 200 and the standardized root mean square 
residual (SRMR) ≤ 0.08 and there are no large (>.2)1 standardized residuals. I will 
also report the RMSEA and CFI, and identify that it is desirable to have a 
confirmatory fit index (CFI) of 0.95 or greater and a root mean squared error of 
approximation (RMSEA) of < 0.05. I will primarily be motivated to make model 
modifications on the basis lack of fit as suggested by the individual residuals 
and/or the SRMR. If the sample size is less than 200, and in contexts where the 
inferences are exploratory rather than confirmatory (e.g., exploratory factor 
analysis), I will rely upon the CFI as the leading indicator of fit. 
 

Table 1. Assessing SEM Model Fit 
Statistic Meaning Interpretation Caution 

SRMR 
Standardized 
root mean 
square residual 

The mean standardized 
residual among mean and 
covariance estimates for 
model-implied relative to 
observed values.  

Infer “approximate fit” when 
SRMR is ≤ 0.08 and there are no 
“large” residuals. The 
computation is based on 
residuals only, and does not 
directly incorporate the sample 
size or model complexity. 

Good models should have low 
SRMR and low residuals, but 
because SRMR does not 
incorporate model complexity, 
the SRMR will not help identify 
over-parameterized models. 
Should not be used if the sample 
size is small (<200); should not 
be interpreted without 
examination of individual 
residuals. 

RMSEA 
Root mean 
squared error of 
approximation 

The model discrepancy 
per degree of freedom 

Infer good fit when less than 
0.05.  

The RMSEA is sample size 
dependent. It may not be 
appropriate when (a) the model 
has low degrees of freedom, (b) 
in small samples. The RMSEA 
will be lower in larger samples. 

CFI 
Confirmatory fit 
index 

Compares estimated 
model to a hypothetical 
null baseline model, 
usually defined as a 
model with all variables 
mutually uncorrelated. 

Infer good fit when greater than 
0.95. 

Compares obtained model to a 
hypothetical model which may 
be known to be incorrect, and as 
such probably better for settings 
where the analysis is 
exploratory rather than 
confirmatory. 

 

 
1 I have no authoritative source for 0.2 identifying “large” residuals. This threshold needs additional research. 
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Introduction 
The first rule of evaluating fit of a structural equation model (SEM) is: no single set of rules and 
cutoffs will be appropriate in all situations. This is because (a) fit statistics are variably 
influenced by many factors besides model-data fit and (b) conventions for judging fit have been 
derived from a limited and arguably simple set of models that may not be completely relevant 
to the goals of the current analysis, and (c) good analysis decisions are unlikely when applying – 
given the nearly infinite variety of data and model types – arbitrary thresholds for binary 
decision making on continuously distributed sample statistics (Greiff & Heene, 2017). The first 
and most important step in evaluating model fit is therefore a critical review of the substantive 
implication of model estimates together with guiding theory regarding the structure of the 
model. Critical and careful handling of data (addressing non-normality, sparseness, and 
collinearity or endogeneity) and visual inspection of substantive results and addressing obvious 
challenges in estimation (negative residual variances, Heywood cases) and careful stepwise 
building of complex models by separate evaluation of sub-model components may, with all due 
luck, avert challenges in model fit variably revealed in global fit statistics. 
 
After the data are checked carefully, a model has been fit as guided by substantive theory, and 
estimates obtained have been evaluated for consistency with that theory, then it may be 
appropriate to evaluate the fit of a model with global fit statistics. To describe the fit of 
structural equation models, there are what have been called absolute and incremental (or 
sometimes called relative) fit indices <cite>. Absolute fit indices describe the degree to which 
the model results agree with observed data. Incremental or relative fit indices describe the 
degree to which the model results correspond to another model, one that makes minimal 
assumptions about the relationships among the variables (variously referred to as a baseline 
model, independence model, or null model). Although there are a great number of available fit 
indices available in structural equation modeling, I place emphasis on an absolute fit index 
computed directly from the residuals: the standardized root mean square residual, or SRMR. 
This is interpreted alongside the individual residuals, and another absolute fit index that 
accounts for model complexity (the root mean squared error of approximation, RMSEA), and an 
incremental fit index, the confirmatory fit index (CFI).  

Absolute fit indices: SRMR, 𝛘𝟐, RMSEA 
Absolute fit indices include the model chi-square (𝜒2), the root mean squared error of 
approximation (RMSEA), and the standardized root mean square residual (SRMR).2  
 
SRMR 
Conceptually, the SRMR conveys the mean absolute difference between observed and model 
estimated standardized means (if included in the model) and standardized covariances (i.e., 
correlations) (Beaujean, 2014). Values can be interpreted as the average population residual 

 
2 Asparouhov & Muthén (2018) describe the SRMR as an "approximate" fit index, along with the CFI, contrasting 
with the 𝜒2  which is a test of exact fit 
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correlation for the model being estimated. There are several different formulations of the 
SRMR in the literature (e.g., R/lavaan produces at least 7 different flavors of SRMR (Beaujean, 
2014)). Describing the SRMR computed in the Mplus framework, Asparouhov & Muthén (2018) 
provide the formula for the SRMR in the all-continuous-dependent variable case SRMR as: 
 

SRMR = √
S

𝑝 + 𝑝(𝑝 + 1)/2
 

 
where 𝑝 is the number of variables in the model, and 𝑝(𝑝 + 1)/2 provides the number of non-
redundant elements in the variance-covariance matrix, and 𝑆 is 
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Where 𝑠, σ are model-estimated and observed values for the variances and covariances, 
respectively. Further, 𝑚, μ are model-estimated and observed values for means, respectively. 
The SRMR is the mean squared error between the target model and all variables freely 
correlated model for correlations (standardized covariances), standardized means, and 
standardized residuals. The Mplus SRMR is distinct in that means and are explicitly incorporated 
into the computation (different software packages may provide different estimates for SRMR if 
the SRMR does not include the means).   
 
The fit statistic does not incorporate model complexity, meaning there is no adjustment for 
model degrees of freedom. The fit statistic also does not directly include the model sample size.  
 
Approximate fit. The ideal value is 0 (perfect fit). Hu & Bentler (1999) suggest values less than 
.08 be taken as indicating good fit. Asparouhov & Muthén (2018) recommend that approximate 
fit can be inferred when the SRMR is  ≤ 0.08 and there are no individual residuals that are 
large. They caution that the SRMR should not be used when the sample size is small (N<200) 
and recommended when the sample size is large (N>500). 
 
Model chi-square (𝜒2) 
The 𝜒2 statistic is computed based on the discrepancy of observed and model-implied mean 
and covariance matrices. As a test of the hypothesis that the specified model generated the 
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data, the 𝜒2 is generally considered to be over-powered in sample sizes large enough to 
support stable estimates of covariance parameters. Therefore, the resulting P-value is rarely 
considered in a strict way, where larger 𝜒2 statistics and smaller P-values indicate greater 
discrepancy between the observed and model-implied mean and covariance matrices. 
Nevertheless, the 𝜒2 forms the basis of many SEM fit statistics, including the RMSEA and CFI 
(but not the SRMR). 
 
RMSEA 
The RMSEA which is based on the 𝜒2 and can be viewed as an index of model discrepancy per 
degree of freedom. It is computed as 
 

RMSEA =
√χ2 − 𝑑𝑓

√𝑑𝑓(𝑁 − 1)
 

 
where 𝑑𝑓 is the model degrees of freedom (a function of the number of variables and number 
of parameters estimated) and 𝑁 is the sample size. This fit index is sensitive to the number of 
parameters and sample size. Ideal values approach 0 and when the computation results in a 
value is less than 0, the RMSEA is set to 0. Hu & Bentler (1999) suggests a cutoff value close to 
0.06, MacCallum, Browne and Sugawara (1996) suggest a RMSEA value less than 0.05 indicates 
good fit, and MacCallum and colleagues (1986) suggest values less than 0.08 indicate mediocre 
fit. So: you could be strict and pick .05 and cite MacCallum et al or give yourself a little bit of a 
break and pick .06 and cite Hu and Bentler. 
 
The RMSEA is not recommended for small degree of freedom models when the sample size is 
small.  Kenny, Kaniskan, & McCoach (2015) write (p502): “we suggest not computing the 
RMSEA for very low df models that do not have a large sample size”. However, it is not really 
clear nor explicitly stated in Kenny et al what constitutes “low df” and “not large sample size”. 
The authors evaluated the power of the RMSEA to reject that the RMSEA was RMSEA = 0.05 
when the data-generating model has an RMSEA of 0.08 over a grid of sample sizes (50, 100, 
200, 400, 600, 1000) and model degrees of freedom (1, 2, 3, 5, 10, 20, 50). They find adequate 
power (>80%) in the following conditions (N(df): 1000(10,20,50); 400(50); 600(50)).  

Relative or incremental fit: the CFI 
The CFI is a relative or incremental fit measure, meaning the computation is based on 
comparing the fit of the target model to a null model or baseline model. It is computed as 1 −
𝑑0/𝑑1 where 𝑑 = χ2 − 𝑑𝑓 and the subscript 0 indicates a baseline model and subscript 1 
indicates a target model.3 The most commonly used null or baseline model is one in which all 
variables are assumed to be uncorrelated (Rigdon, 1996). The most recent rules-of-thumb call 
for interpreting good fit when CFI values are at least 0.95 (Hu & Bentler, 1999). 

 
3 Note that if RMSEA = sqrt(d1)/sqrt(df(N-1)), then c2-df = (df(N-1))*RMSEA^2. Therefore, CFI = 1- 
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Cautions and caveats in interpreting fit statistics  
Deviations from normality in observed data can inflate χ2 and worsen associated fit statistics 
(CFI, RMSEA).  
 
Models with more variables may have lower (better) RMSEA and lower (worse) CFI (Kenny & 
McCoach, 2003). Therefore, improving CFI might warrant considering reducing the number of 
variables (e.g., via omitting variables parcels). This practice might detract from the validity of 
the model (Bandalos, 2008) [see endnote 1, below] and is not recommended as a general 
approach.  
 
Larger sample sizes tend to be associated with models with larger RMSEA and SRMR values 
(Kenny, 2015). If the RMSEA is poor and the degrees of freedom is small, it may be that the 
model is not one that is appropriate for using the RMSEA (Kenny et al., 2015).  
 
If the SRMR indicates good fit but the CFI and/or the RMSEA do not, it could be that  

• extraneous parameters being estimated (e.g., regressions or factor loadings that are not 
important), 

• the SRMR as a summary fit statistic is masking a small number of sample statistics that 
are estimated with high residuals, or  

• the observed variable residual variances are low, such as when observables are 
measured with high reliability (Browne, MacCallum, Kim, Andersen, & Glaser, 2002).4 

 
When fit statistics do not agree, we can consider the advice of Rigdon (1996) who argued that 
the absolute indices (specifically the RMSEA) are more important in confirmatory modeling and 
the incremental (specifically the CFI) fit indices more important in exploratory contexts. The 
reason is that the CFI relies upon the assumption that the null or baseline model is reasonable 
in the population, which is almost always false. The CFI may be appropriate in the context of 
novel research questions involving smaller sample sizes, while the RMSEA (and we may assume 
other absolute measures of fit) more appropriate in more confirmatory research questions 
involving larger sample sizes. Rigdon (1996) provides an alternative expression of the RMSEA -- 
 

RMSEA = √
F̂

df
−

1

(N − 1)
 

 

Where F̂ = (s − σ̂)′W−1(s − σ̂), a weighted (standardized) sum of squared deviations of the 
fitted 𝑠 versus observed σ covariance matrix. This expression clearly reveals how the RMSEA is 
sample size dependent. With small N, a well-fitting model (by χ2) may not reach the RMSEA 
threshold for "good fit". If the available sample is very large, the RMSEA may indicate good fit 
when the model is not a particularly good model.  
 

 
4 This is a cool paper that should be updated with modern fit statistics, and perhaps generated/simulated data 
reflecting larger sample sizes. 
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As would seem to support Rigdon’s advice to prioritize the CFI in exploratory research 
questions, Garrido and colleagues (2016) compared the CFI (and TLI), RMSEA, and a (Mplus 
v6.11) SRMR in simulation study concerning identifying the number of factors in an exploratory 
factor analysis inference setting. A clear advantage in terms of power for making the correct 
inference was seen for the CFI (and TLI), followed by RMSEA, and SRMR was the least accurate. 
Greiff and Heene (2017) report similar findings although they do not report the statistical 
software used. 
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Endnotes 
 
Note 1: Parcels 
 
Use of parcels can lead to improved fit. However, whether or not this is the "right" approach 
was investigated by Bandalos (2008). She reports that (p234-235): 
 

[d]istributed parceling methods, in which items that share secondary sources of variance are 
parceled together with items that do not, have been advocated on the grounds that they will 
result in better model fit, as measured by commonly used fit indexes in SEM. Parceling schemes in 
which nonnormally and normally distributed items are included in the same parcel have also been 
recommended as a way of obtaining more normally distributed indicators for use in covariance 
structure analyses, and this technique has been found to produce better model fit in empirical 
studies (Landis et al., 2000). In this study a parceling method that combined these two 
approaches was applied to four different models, misspecifying the model by effectively 
collapsing two correlated factors (Models 1 and 2) or by masking the presence of a method factor 
(Models 3 and 4). Solutions based on this parceling strategy evidenced good fit, outperforming 
solutions based on other types of parceling. However, it is not clear whether this is a help or a 
hindrance to those whose interest is in obtaining an accurate picture of parameter estimates and 
model fit. Although use of this technique did result in excellent fit, it did so for models that were 
misspecified, resulting in a high rate of Type II errors. Perhaps more important, use of this 
parceling technique resulted in unacceptable levels of bias for the structural parameters in the 
model. 

 
and go on to say (p 238) 
 

Researchers analyzing coarsely categorized or nonnormally distributed data are therefore advised 
to make use of [the Mplus WLSMV] estimator rather than resorting to parceling methods if the 
unidimensionality of the variables to be parceled cannot be assured. 

 
These results would seem to argue in favor of using a measurement model for multiple-
indicator scales rather than multiple item parcels even when fit is sub-optimal. 
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